Bias-Corrected Bootstrap and Model Uncertainty
نویسندگان
چکیده
The bootstrap has become a popular method for exploring model (structure) uncertainty. Our experiments with artificial and realworld data demonstrate that the graphs learned from bootstrap samples can be severely biased towards too complex graphical models. Accounting for this bias is hence essential, e.g., when exploring model uncertainty. We find that this bias is intimately tied to (well-known) spurious dependences induced by the bootstrap. The leading-order bias-correction equals one half of Akaike’s penalty for model complexity. We demonstrate the effect of this simple bias-correction in our experiments. We also relate this bias to the bias of the plug-in estimator for entropy, as well as to the difference between the expected test and training errors of a graphical model, which asymptotically equals Akaike’s penalty (rather than one half).
منابع مشابه
Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملInterval estimation of excess risk related effective doses in tobit models
INTERVAL ESTIMATION OF EXCESS RISK RELATED EFFECTIVE DOSES IN TOBIT MODELS by Jia Wang ADVISOR: Professor Nan Lin December 2009 Saint Louis, Missouri In this thesis we consider interval estimation of excess risk related effective dose (ERED) in dose-response studies using tobit model. Let P (x) be the probability of response at dose level x. Considering the background probability P (0), excess ...
متن کاملBias Correction with Jackknife, Bootstrap, and Taylor Series
We analyze the bias correction methods using jackknife, bootstrap, and Taylor series. We focus on the binomial model, and consider the problem of bias correction for estimating f(p), where f ∈ C[0, 1] is arbitrary. We characterize the supremum norm of the bias of general jackknife and bootstrap estimators for any continuous functions, and demonstrate the in deleted jackknife, different values o...
متن کاملBootstrapping the Out-of-sample Predictions for Efficient and Accurate Cross-Validation
Cross-Validation (CV), and out-of-sample performance-estimation protocols in general, are often employed both for (a) selecting the optimal combination of algorithms and values of hyper-parameters (called a configuration) for producing the final predictive model, and (b) estimating the predictive performance of the final model. However, the cross-validated performance of the best configuration ...
متن کاملNonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}
The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...
متن کامل